Cholestatic effects of the K+ channel blockers Ba2+ and TEA occur through different pathways in the rat liver.

نویسندگان

  • Ceredwyn Elizabeth Hill
  • Jody Elisabeth Jacques
چکیده

The role of K+ channels in bile acid-independent bile flow (BAIF) was studied in the isolated and bile duct-cannulated perfused rat liver by changing the driving force on K+and by using a variety of K+channel blockers. Bile flow rate, effluent perfusate K+ content, and portal pressure were measured. Increase in perfusate K+ from 5.9 to 80 mM caused inhibition of bile flow that could be fitted to a Boltzmann distribution, indicating partial dependence of bile formation on the K+ equilibrium potential and hence K+ channel activity. To investigate this further, the effects of compounds established as K+ channel blockers in liver or other tissues were surveyed. Ba2+ (1-5 mM) inhibited mean bile flow by 20%. Tetraethylammonium (TEA) inhibition of basal bile flow was biphasic with saturable (IC50 ∼0.7 mM) and linear components. In contrast, infusion of the K+ channel blockers 4-aminopyridine (5 mM), cesium (2.5 mM), quinidine (0.1 mM), iberiotoxin (90 nM), or paxilline (100 nM) did not affect bile flow. As expected for a K+ channel blocker, Ba2+ caused a net K+ uptake. Conversely, TEA did not affect basal K+ fluxes, although TEA-induced cholestasis was accompanied by a 26% decrease in biliary glutathione excretion. These results suggest that the partial cholestasis induced by the K+channel blockers Ba2+ and TEA occurs by significantly different mechanisms. Whereas the Ba2+ response implicates K+ channel activity as a significant driving force in BAIF, TEA-sensitive K+ channels are not present or are not involved in bile formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cholestatic effects of the K1 channel blockers Ba21 and TEA occur through different pathways in the rat liver

Hill, Ceredwyn Elizabeth, and Jody Elisabeth Jacques. Cholestatic effects of the K1 channel blockers Ba21 and TEA occur through different pathways in the rat liver. Am. J. Physiol. 276 (Gastrointest. Liver Physiol. 39): G43– G48, 1999.—The role of K1 channels in bile acid-independent bile flow (BAIF) was studied in the isolated and bile ductcannulated perfused rat liver by changing the driving ...

متن کامل

The vasodilatory action of telmisartan on isolated mesenteric artery rings from rats

Objective(s): Angiotensin Ⅱ type 1 receptor blockers (ARBs) represent one of the widely used antihypertensive agents. In addition to anti-hypertension effect, some ARBs also show other molecular effects such as activating peroxisome proliferator-activated receptor-γ and so on. Here we studied the effects of telmisartan on the rat isolated mesenteric artery rings pre-contracted by phenylephrine ...

متن کامل

Effect of crude Venom of Odonthobuthus doriae scorpion in cell culture using ion channel modulators

Scorpion venom toxicity is one of the major medical concerns from old years, due to its influence on human activities and health. From many years ago a lot of researches established to examine different aspects of venom toxicity and its effects on different organs. During these years researchers are doing more specific studies on the cytotoxicity of scorpion venom. In Iran, Odonthobuthus doriae...

متن کامل

The Antiiflammtory Activity of calcium-channel antagonists on chronic inflammation in rat

calcium mobilization is known to be an important factor in the activation of cells involved in inflammation,so,calcium-channel antagonists are be expected ti exhibit antiinflammatory activity.in the present study,we evaluateted the antiinflammatory effects of two calcium channel blockers,verapamil and nifedipine on adjuvant induced chronic in flammation in rat paw.sixty adult male rats were div...

متن کامل

The Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus

Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 276 1  شماره 

صفحات  -

تاریخ انتشار 1999